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15- J?7g SUMMARY 

A minimum response time criterion is used in the design of a pitch- 

attitude controller fo r  a flexible launch vehicle. 

fourth-order model containing the pr imary dynamics of the thirteenth-order 

vehicle. 

closed-loop control law.  

show that this control l a w  properly applied to the flexible vehicle results in 

good control. 

The criterion is applied to a 

A collection of open-loop optimal trajectories is used to define a 

Resul t s  of an analog simulation a r e  presented which 

In spite of the relatively large effort which has gone into the study of 

optimization during the last f e w  years, there have been few applications to  signif- 

icant, practical closed-loop control problems. This  is t rue in spite of the fact 

that theoretical developments promise solutions or potential solutions to control 

problems for  which conventional synthesis procedures a r e  not completely sat is  - 
factory. Among the difficulties which have hindered practical applications a re :  

adequate description of real plants often requires differential equations of quite 

high order ,  the control law is usually a nonlinear function of many variables and 

difficult to implement, and the theoretical solution of the optimization problem 

most often yields the open-loop law, u (t, x(O)) ,  ra ther  than the required 

c?escd-?oop law,  ii(x). The flexible launch vehicle is used in tnis paper to i l i u s -  

trate these problems and to demonstrate the use of some techniques to overcome 

them. 



EQUATIONS O F  MOTION 

The assumed equations of a typical 250, 000-lb flexible launch vehicle 

a r e  given in Table 1. Poles and zeroes of the 8 / u  transfer function a r e  listed 

in Table 2 .  

flight condition with flight speed assumed constant. 

i c s  of the rigid body, three-body flexure modes, tail-wags dog, actuator, and 

rate  servo and an  integration of pitch rate  for control of pitch attitude. 

control variable is assumed available from gimbaling of the engine. 

gimbal rate of 0 . 2  rad /sec  is commanded at all times. 

R 
Airframe coefficients a r e  taken at  the maximum dynamic pressure 

The equations include dynam- 

A single 

A maximum 

SPECIFICATION O F  THE CONTROLLER 

In applying optimal control theory to the synthesis of controllers for  

practical plants, i t  is necessary to specify both the optimization cri terion and 

what is to be controlled. 

i t  has been common to apply the criterion to the state vector y of a plant in 

the form 

With the cri terion of minimum response time used here 

(1) f = Ay + Bu. 

However, when this is done, the resulting response in multidegree of freedom 

systems may be entirely unacceptable. This is forcefully demonstrated by time- 

optimally regulating the state vector of the rigid launch vehicle given in Figure 1 

When all components of the state vector, pitch attitude, pitch rate,  angle of 

attack, and gimbal deflection a r e  brought to zero in minimum time from an 

initial displacement in pitch attitude of 0. 01 rad displacements of attitude and 

angle of attack greater  than 0. 15 rad occur. Although this is the time-optimal 

response for regulation of the state vector, i t  is certainly not acceptable since 

i t  would literally destroy the vehicle. 

On the other hand, if the problem posed is that of bringing the single 

component, pitch attitude, to zero in minimum time and holding i t  there, the 

deadbeat response to step input of attitude is obtained (Fig. 1). In this case, 
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Figure 1. Time Optimal Control of a Rigid Launch Vehicle 
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angle of attack and gimbal deflection a r e  not zero at  the response time (time 

when 8 and 8 a r e  f i rs t  zero), but decay with a 21 .  7-sec time constant charac- 

ter is t ic  of the plant. 

described a s  motion to a region in the n-dimensional space. 

is determined as that region in n-space where the component being controlled is 

zero and is capable of being held there with a bounded control variable (Ref 1 and 

2).  

region have been obtained (Ref 3). 

It has been shown that single-component control can be 

The target region 

The necessary and sufficient conditions for minimum time motion to such a 

In the work presented in this paper, optimum control synthesis tech- 

The controller obtained is niques are demonstrated for control of pitch attitude. 

fourth order, one dimensional. That is, the control variable is a function of 

four variables, and the target set  is a line segment in this four-space. 

of pitch attitude w a s  arbitrary.  

other components of the state vector o r  to control of a l inear combination of them 

such as minimum drift. 

Choice 

The techniques apply equally well to control of 

A TRUNCATED MODEL 

Although time-optimal control theory applies in principle to regula- 

tion of plants of any order,  it is not desirable nor necessary to apply i t  in  con- 

t rol ler  design to the complete plant representation when the motion of the variable 

being controlled is primarily influenced by relatively few variables. 

launch vehicle considered, the flexure mode frequencies are quite high and aero- 

dynamic coupling is small, so flexure has only minor effects on rigid-body 

pitching motion. 

there is a natural division of the plant into a set  of dominant and a set  of second- 

a r y  dynamics. Time-optimal synthesis is applied to  control the dominant modes 

only, and conceptually the secondary dynamics act as a filter on the pr imary 

modes. 

In the 

The same is t r u e  of the actuator dynamics. Consequently, 

This is shown in Figure 2. 

The transfer function 8 /u, for the entire plant of Table 1, has  
R 

been divided into two par ts  
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Pr imary  dynamics are contained in  

0 .8808 (s + 0. 0478) G =  1 S ( S  + 0 .02)  ( S  - 1 .4296)  ( S  + 1 , 4 9 6 4 )  ( 3 )  

and secondary dynamics in G Feedback of the fictitious output of G is used 

for  controller design. The partial principle coordinate methods of Reference 4 

permit deriving the l inear transformation relating the y-coordinates to  the state 

of the system, x. The transformation 

2' 1 

y = Lx (4 )  

where y is an m-vector, L, an mxm-matrix, and x, an n-vector, in general, 

then permits the fictitious control loop of Figure 2 to be changed to the one which 

is physically realizable in Figure 3. 

A plant in state vector form which gives the transfer function of 

0 1 0 0 

+ -0.0394 2.1403 -4,404 I!] 
1.00 -0.02738 -0.0421 y3 

0 0 -0.02 

-:I 0 u .  

.2 

(5)  

This was obtained by deriving (y ( s ) ) / ( u ( s ) )  and (y ( s ) ) / ( u ( s ) )  t ransfer  functions 

f rom a set of equations of this form but with unknown coefficients and then adjust- 

ing coefficients to give the proper poles, zeroes, and gains. A similar set  of 

equations could be obtained directly from the t ransfer  functions of Eq ( 3 )  and the 

transformation to continuous coordinates of Reference 5. 

1 3 

The transformation matr ix  L, which relates  the output of the flexible 

It is possible vehicle to the y-variables contains many elements which are small. 

to neglect these. The transformation used in the analog simulation w a s  

8 



It is seen that 

- 
1 0.0341 0.0729 0 0 0  0 -0.151 [ 
0 0.999 
o 0.0341 0.999 O -0.0016 aR 

0 0  0 1 0  
- 

- 
with R’ ’3 

corresponds very closely with El R’ ’2 with 8 Y 1  
and y with bC. Motion of 0 corresponds very closely with that of 

so it is reasonable to take Eq  (5) a s  the truncated model of the fu l l  system. 
a R’ 4 F 

e R’ 
Two points should be emphasized in the choosing of a truncated model 

for controller design. First, division of the plant into pr imary and secondary 

dynamics cannot be made until the variable to be controlled has been specified. 

This variable may be one of the physical variables appearing in the state vector 

x o r  may be a l inear combination of them. Second, even i f  the secondary 

dynamics are a result  of a limited number of physical variables in the equations 

of motion, Eq (l),  the pr imary dynamics cannot be obtained by simply neglecting 

these variables and equations. 

modes and actuator w e r e  omitted in truncating to  a fourth-order model cor res -  

ponding to G 

For example, i f  the equations for  the flexure 

the poles a t  -1.4962 and 1.4296 would be at -1. 47 and 1.403. 
1’ 

CLOSED-LOOP TIME-OPTIMAL CONTROL LAW 

The next step in the synthesis procedure is to  derive a closed-loop 

controller for  the model of Eq (5). The criterion for design is time-optimal 

regulation of pitch attitude; that is, y 

condition in minimum time, subject to a bounded control variable, and then 

held at zero. This corresponds to  motion to a one-dimensional line segment in 

the four-.dimensional space of 8 F, OF, aF9 and 6 

is to be brought to ze ro  f rom an initial 1 

F’ 
There is no known method for  obtaining a useful closed-form ex- 

pression for  the closed-loop control l a w  u(x) which moves the plant to the 

desired line segment optimally. However, it is possible to compute open-loop 

solutions u (t, x( 0) )  f o r  any initial condition x( 0)  by the computational 

9 



techniques described in Reference 6. 

dental equations fo r  a control variable u (t, ~ ( 0 ) )  which is constrained to  satisfy 

the maximum principle. 

necessary and sufficient condition for  the optimum solution, the u (t,  x(0)) ob- 

tained is the optimal one. It is not practical to solve the required equations on 

line to achieve effective closed-loop control. Instead, a collection of open-loop 

optimum trajectories f rom a se t  of initial conditions distributed evenly through- 

out the phase space region of interest  is used to define a closed-loop control l a w  

These techniques solve a se t  of transcen- 

Since the maximum principle has been shown to be a 

by the method described in Reference 7 .  Each of the variables 8 F' 'FJ ~ F J  

and b i s  divided up into 32 regions called quanta. A Boolean variable 

Xi , is defined for each quantum ( i = 1, 2, 3, 4; j = 1, 2, . . . 32). 
j th 

able Xi takes a value one if  the measured magnitude of the i 

F 
j The vari-  

variable is within 
th the j region and takes the value zero if the magnitude is within any other region 

A logic form, 

u(x) = ( 7 )  

is assumed capable of mechanizing the control law, and the 128 constants, X j 
a r e  experimentally adjusted to make u(x) agree with the optimum control a t  

discrete points on the optimum trajectory. 

i' 

This adjustment o r  training procedure is shown in Figure 4. Switch E 

is opened at t = 0, and the open-loop optimal solution u(t) is applied to the simu 

lated plant. Output of the plant x(t) is the input to the logical net, and the output 

of the net u(x(t)) is compared with the optimum control variable u(t, x(0)) a t  

discrete intervals of time. 

ponding to the X . ' s  which a r e  one fo r  that x(t) a r e  incremented in the direction 

to make the sign of their sum the same as the sign of u(t, x(0)). 

u(t, ~ ( 0 ) )  a r e  the same, no adjustment is made. 

out on a general purpose digital computer with a se t  of 198 optimum trajectories 

for the plant of Eq (51, distributed in the space, 

10  

If the control variables a r e  different, 1 j co r r e s -  i 
j 
1 

If u(x(t)) and 

This procedure was  carr ied 



1 I DIFFERENT 

OPT1 MUM 
CONTROL 

SOLUTION 
u ( t )  FOR x(o) 

F i g u r e  4. Logic Adjus tment  P r o c e d u r e  
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Control variable comparison points w e r e  at intervals of 0. 1 sec. 

As the adjustment is carr ied out, the number of differences (called 

e r rors )  between u(x(t)) and u(t, x(0)) is an indication of the convergence of the 

procedure. 

plotted as a function of the number of t ra jector ies  in Figure 5. 

points are those between t = 0 and the first switch time, second switch points 

between the first switch time and the second, etc. 

be zero. It is seen that e r r o r s  drop very rapidly at first, being less than 10% 

after only 100 trajectories.  

logic of Eq ( 7 )  is artificially increased by multiplying all X .  I s  by 2. 

The percentage of e r r o r s ,  100 (NO. of e r r o r s  in Npoints/N),  is 

First switch 

Initial X j I s  w e r e  all taken to i 

At 5000 and 7500 t ra jector ies  the resolution of the 

At 11, 000 j 
1 

trajectories, the X j i ls are multiplied by a factor of 10. Typical closed-loop 

control responges by the logic at the stages of training shown in Figure 5 are 

presented in Figure 6. 

the statically unstable vehicle. 

stable, but responses are poor. 

approximate optimum. 

loop responses at 13, 500 trajectories,  ) The logic of Eq ( 7 )  with constants at 

11, 000 trajectories is taken as the closed-loop controller for  the plant of Table 1. 

At 198 trajectories the controller has not yet stabilized 

At 2100 trajectories the closed loop is apparently 

At 11, 000 trajectories responses closely 

(Limited hardware did not permit evaluation of closed- 

CONTROL O F  THE FLEXIBLE VEHICLE 

A block diagram of the cantrol system is given in Figure 7. Mechani- 

zation of the logical net for this optimal control of the fourth-order plant was 

accomplished by using standard, commercial analog to digital converters for  

quantization and diode - t ransis tor  logic in conjunction with standard ladder net- 

works to form the logic of Eq ( 7 )  (Ref 7). 

variable w a s  used when the plant output w a s  within approximately 1 quantum of 

A linear switching mode of the control 

1 2  



FOURTH-ORDER, ONE-DIMENSIONAL 
TIME-OPTIMAL CONTROL OF THE 
PLANT 

' x1 

x3 

I 1 y 2  
1 ;4 \,$- I& SWITCH POINTS 

ZPPWITCH 4 
POINTS 

PERCENT 
ERRCRS 

3u SWITCH 
POINTS 

7 

1 0 0 
i 

-0.0394 2.140 -4.404 i 

CLOSED- LOOP 
CONT#X TESTS 

\ 

\ \'\\ 

-0.0274 -0.0421 1 

-0.02 1 1 0 

COLLECTION OF 198 TRAJECTORIES 

u~x!  = sign 1 xi  

CLOSED-LOOP 
CONTROL TESTS \ - 

\ 

CLOSED-LOOP 
CONTROL TESTS 

'\ 

TRAINING TRAJECTORIES 

0 

0 

0 

1.: 

I 1 I 

100 loo0 lap00 

Figure 5. Fourth-order Training Curve 

U 

13 



-01 

6 0  

00 

-011 

B o  

0.12 

-04 

a 0  

01 

-011 

8 9  

011 

Figure 6 .  Closed-loop Responses at Three 

I C 1  
urm 11,000 llLLOoTr1 

Stages of Training 

1 4  



Y 

I 1 I 

(1 

E 
cd 

k 
Q, a 
8 
5 
k 
2 
0 
k 
I 

k 
M 
a 

Q, 
k 

15 



I the target set. 

switching surface and held the plant within the target set. 

This reduced residual e r r o r s  due to switching on a quantized 

The l inear switching 

used in  this mode was 
- 1 

U = sfgn e + 1.25 bF +- 0.65 
i E ”  
L - 

No attempt was made to minimize the steady state limit cycle with the control 

variable in t h i s  mode. 
I Two schemes for  measurement of the variables fed back to the con- 

In the first the state of the system w a s  measured by t rol ler  were investigated. 

the method of Reference 8 in which a complement of n sensors  is used in measur-  

ing the state of an  n order  system. In the second, a rigid-body pitch rate 

signal was derived by the phase blending technique of Reference 9. 

a signal which could be freed of first-mode influence; however, in this case a 

slight amount of first mode feedback was included in the signal to damp the first 

mode bending. 

th 

This provided 

I 

Typical analog responses a r e  shown in Figures 8, 9, 10, and 11. 

Rigid-body pitch attitude responses are quite s imilar  for rigid-body feedback and 

for blender feedback of pitch rate. 

(blender gain K = 0 .9 )  causes the first mode to damp out with the blender system 

whereas the rigid-body feedback there is a sustained oscillation. 

blender gain K was  set to cancel all first mode feedback (K = 1. 0), the blender 1 1 
system also exhibited a sustained oscillation of the first mode. 

40-fps sharp-edged gusts a r e  shown in Figure 10. 

regulator essentially ignores the gust disturbance and maintains the desired 

attitude. Figure 11 illustrates response to various command inputs. Although 

the system w a s  designed to approximate time-optimal regulation, it exhibits a 

very good following capability. 

I 

The small amount of first mode feedback I 

I 

1 
When the 

Responses to 

The single-component attitude 

CONCLUSION 

It has been shown that the collection of experimental procedures and 

theoretical knowledge is sufficient to use a time-optimal regulation cri terion for 

1 6  
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rational design of controllers fo r  a high order plant with known coefficients. The 

synthesis procedure includes obtaining a representative set  of open-loop optimum 

trajectories for  a truncated model which is based on the dominant dynamics of the 

plant. 

law for  the model. 

is effectively that of the optimally controlled model filtered by the secondary 

dynamics of the plant. 

measurement requirements a r e  severe in that the entire state of the system 

must be measured. 

undesirable because of the large number of sensors required. 

the gyroblender give promise of relaxing these requirements. 

The se t  of open-loop trajectories is used to define a closed-loop control 

When this controller is applied to the fu l l  plant, the output 

The resulting controller is relatively simple. However, 

This is feasible with the methods of Reference 8 but 

Such schemes a s  

Minneapolis-Honeywell Regulator Company 
Minneapolis, Minnesota 
October 1962 
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